卢国梁
发布时间:2017-11-12 22:30:49    作者:    点击:[]
姓名 卢国梁
性别

                                                                                         

出生年月 1982.04
行政职务
学历 博士研究生 学位 博士
专业技术职务及任导师情况  副教授,硕士研究生导师
所在一级学科名称  机械工程
所在二级学科名称  机械电子工程

 

学术身份

山东大学青年学者未来计划

 

学术兼职

中国振动工程学会转子动力学专委会理事;中国振动工程学会故障诊断专委会理事;中国计算机学会计算机视觉专委会理事;JPHM期刊编委;ICPHM、PHM、SDPC等会议组委、分会场主席等

 

国内外学习和工作经历

2013.09-至今,山东大学,机械工程学院机械电子工程研究所,副教授
2013.02-2013.03,日本北海道大学,信息科学研究科,研究助理
2009.10-2013.03,日本北海道大学,信息科学研究科,博士
2006.09-2009.07,山东大学,机械电子工程,硕士
2002.09-2006.07,山东大学,机械电子工程,学士

 

主讲课程

本科生:微机原理与应用、计算机理论及应用
研究生:视觉伺服技术

 

研究领域
机电系统PHM及可靠性;微纳视觉观测与测量;时序数据挖掘与应用


承担科研项目情况

主持国家自然科学基金、山东省自然科学基金、教育部留学回国基金和“面向XXX的视觉检测与算法开发”、“XXX全链路监控关键技术研发”等课题;参与国家重点研发计划等。

 

近期主要的代表性论文、著作、专利

近期主要的代表性论文、著作、专利

部分论文如下:

[1] Wang T, Lu G*, Yan P, A Novel Statistical Time-Frequency Analysis for Rotating Machine Condition Monitoring, IEEE Transactions on Industrial Electronics (SCI/EI), 2019

[2] Chen G, Lu G*, et al. An integrated framework for change detection in running status of industrial machinery under transient conditions, ISA Transactions (SCI/EI), 2019

[3] Su G, Lu G*, Yan P, Planar motion measurement of a compliant micro stage: an enhanced microscopic vision approach, IEEE Transactions on Instrumentation and Measurement (SCI/EI), 2019

[4] Wang T, Lu G*, Yan P, Multi-sensors based condition monitoring of rotary machines: an approach of multidimensional time-series analysis, Measurement (SCI/EI), 2019

[5] Yang S, Lu G*, et al. Change detection in rotational speed of rotary machinery using Bag-of-Words based feature extraction from vibration signals, Measurement (SCI/EI), 2019

[6] Wen X, Lu G*, et al. A stiffness-based degradation model for lifetime monitoring of nano/micro motion systems, Journal of Prognostics and Health Management, 2019

[7] Wen X, Lu G*, et al. Differential Equation-Based Prediction Model for Early Change Detection in Transient Running Status, Sensors (SCI/EI), 2019

[8] Gao Z, Lu G*, Yan P. Graph-based change detection for condition monitoring of rotating machines: an enhanced framework for non-stationary condition signals, Measurement Science and Technology (SCI/EI), 2019

[9] Gao Z, Lu G*, et al. Recognizing Human Actions in Low-Resolution Videos: An Approach Based on the Dempster-Shafer Theory, International Journal of Pattern Recognition and Artificial Intelligence (SCI/EI), 2019

[10] Yang S., Lu G*, et al. High-level Feature Extraction based on Correlogram for State Monitoring of Rotating Machinery with Vibration Signals, International Journal of Performability Engineering (EI), 2019

[11] Lu G*, Liu J, Yan P. Graph-based structural change detection for rotating machinery monitoring, Mechanical Systems and Signal Processing (SCI/EI), 2018

[12] Wang T, Lu G*, et al. Graph-based Change Detection for Condition Monitoring of Rotating Machines: Techniques for Graph Similarity, IEEE Transactions on Reliability (SCI/EI), 2018

[13] Gao Z, Lu G*, Yan P, et al. Automatic Change Detection for Real-time Monitoring of EEG Signals, Frontiers in Physiology (SCI/EI), 2018

[14] Lu G, et al. Efficient block matching using improved particle swarm optimization with application to displacement measurement for nano motion systems, Optics and Lasers in Engineering (SCI/EI), 2018

[15] Gao Z, Lu G*, et al. Key-frame Selection for Automatic Summarization of Surveillance Videos: A Method of Multiple Change-point Detection, Machine Vision and Applications (SCI/EI), 2018

[16] Zeng S, Lu G*, Yan P., Enhancing Human Action Recognition via Structural Average Curves Analysis, Signal, Image and Video Processing (SCI/EI), 2018

[17] Lu G*, Zhou Y, Lu C, et al. A novel framework of change-point detection for machine monitoring, Mechanical Systems and Signal Processing (SCI/EI), 2017

[18] Gao Z, Lu G*, Yan P, Key-frame selection for video summarization: an approach of multidimensional time series analysis, Multidimensional Systems and Signal Processing (SCI/EI), 2017

[19] Wang T, Lu G*, et al. Adaptive Change Detection for Long-Term Machinery Monitoring Using Incremental Sliding-Window, Chinese Journal of Mechanical Engineering (SCI/EI), 2017

[20] Gao Z, Lu G*, Yan P, et al. Retrospective analysis of time series for frame selection in surveillance video summarization, Signal, Image and Video Processing (SCI/EI), 2017

[21] Lu G*, Zhou Y, Li X, et al. Unsupervised, efficient and scalable key-frame selection for automatic summarization of surveillance videos, Multimedia Tools and Applications (SCI/EI), 2017

[22] Lu G*, Zhou Y, Li X, et al. Efficient action recognition via local position offset of 3D skeletal body joints, Multimedia Tools and Applications (SCI/EI), 2016

[23] Lu G*, Kudo M. Learning action patterns in difference images for efficient action recognition, Neurocomputing (SCI/EI), 2014

[24] Lu G*, Kudo M, Toyama J. Temporal segmentation and assignment of successive actions in a long-term video, Pattern Recognition Letters (SCI/EI), 2013

[25] Lu G*, Kudo M. Self-similarities in difference images: a new cue for single-person oriented action recognition, IEICE TRANSACTIONS on Information and Systems (SCI/EI), 2013

[26] Lu G*, Kudo M, Toyama J. Selection of characteristic frames in video for efficient action recognition, IEICE TRANSACTIONS on Information and Systems (SCI/EI), 2012

[27] Lu G*, Kudo M, Toyama J. Action Recognition via Sparse Representation of Characteristic Frames, ICPR2012, Oral Presentation

[28] 卢国梁*, 路长厚, 宋怀波. 基于结构特征的金属标牌字符的断裂修补, 光电子•激光(EI), 2008


专利及著作权:

[1] 发明专利:基于多传感器的旋转机械系统运行状态监测方法及系统;一种基于声学信号分析的机械系统运行状态实时监控方法;基于显微视觉的微纳平台位移测量方法及系统;一种脑电信号状态变化的实时检测方法及系统;基于脑-机接口的昏迷自动报警系统及报警方法;一种监控视频特征帧在线提取方法;一种行为视频无监督时序分割方法;自动化物流分拣系统等

[2] 软件著作权:SDU脑电信号检测软件V1.0;PHM实验平台控制软件V1.0;基于声学的机械系统故障诊断系统V1.0等


获奖项目

日本北海道大学计算机科学专攻长赏(2013年)
山东省优秀硕士论文(2010年)、山东大学优秀硕士论文(2010年)
山东大学研究生校长奖学金(2008年)
PHM2018-Chongqing最佳论文奖
指导硕士生获山东大学学生“五•四”青年科学奖(2019年第十届)
指导硕士生获研究生国家奖学金(2017年、2018年)
指导本科生获全国大学生机械创新设计大赛二等奖(2016年)
指导本科生获山东大学优秀毕业论文(2017年)

 

联系方式

邮箱:luguoliang@sdu.edu.cn

 

上一条:李学勇 下一条:唐 伟

关闭

Copyright ©2017-2020 山东大学机械工程学院 All rights reserved.
办公地址:山东省济南市经十路17923号山东大学千佛山校区 邮编:250061 电话:0531-88392608 传真:0531-88392608 [网站管理]